

# **Students' Round Table – 3rd Edition**



Date: 24.04.2023

1

### The use of green technologies combat

global warming by reducing greenhouse gas emissions through alternative sources of energy which do not deplete critical fossil fuels.

# WHY GREEN TECHNOLOGY IS NECESSARY

Green technologies essentially reduces the risks posed to our environment and in conserving natural resources.

Green technology ensures that **clean**, **renewable** energy sources are used to prevent the other non-renewable sources from being fully depleted.



# **ELECTRIC VEHICLES (EVs)**





Creator: David Zalubowski | Credit: AP

With the transport industry being responsible for roughly 28% of total carbon dioxide (CO2) emissions and road transport accounting for more than 70% of transport sector emissions, Electric vehicles are capable of promoting sustainable and efficient transportation.

The use of Electric vehicles can reduce the concentration of air pollutants, CO2, and other greenhouse gases.

# **ADVANTAGES OF ELECTRIC VEHICLES**



**Zero emissions**: These cars produce no tailpipe pollutants, CO2, or nitrogen dioxide (NO2).



- **Simplicity:** Their engines are simpler and more compact resulting substantially lower maintenance.
- **Reliability:** EVs are not subject to the wear and tear caused by engine explosions, vibrations, or fuel corrosion. Hence they are fewer failures.



- **Cost:** The vehicle's maintenance and power expenses are substantially lower when compared to typical combustion cars' maintenance and fuel expenditures.
- Comfort: Traveling in an EV is more comfortable since there are no tremors or engine noise.

# **DIFFERENT TYPES OF EVs**

**Battery Electric Vehicles (BEVs):** Vehicles 100% are propelled by electric power.

**Plug-In Hybrid Electric Vehicles (PHEVs):** EVs propelled by a conventional combustible engine and an electric engine charged by a pluggable external electric source.

**Hybrid Electric Vehicles (HEVs):** EVs propelled by a combination of a conventional internal combustion engine and an electric engine.

**Fuel Cell Electric Vehicles (FCEVs):** These EVs are provided with an electric engine that uses a mix of compressed hydrogen and oxygen obtained from the air.

ded

Illustration by Ryan Olbrysh | Car and Driver

**Extended-range EVs (ER-EVs):** Similar to the BEV category except that they are provided with a supplementary combustion engine, which charges the batteries of the vehicle if needed.



# normally restricted to 200 to 350 km,

**Driving range:** With a full charge, range is

**Charging time:** It might take 4 to 8 hours to fully charge the battery pack.

**Battery price:** Big battery packs are costly.



#### Course Programme: Environmental Technology I

eventually define the future of electric vehicles.

# CHALLENGES OF ELECTRIC VEHICLES



Creator: zorazhuang | Credit: Getty Images/iStockphoto



Researchers, however, are working on new battery technology in order to boost

driving range while decreasing charging time, weight, and cost. These elements will

6



# **CONCLUSION**



- The primary benefit of Electric vehicles (EVs) propulsion technology is its significant reduction in greenhouse gas emissions compared to traditional vehicles.
- Electric Vehicles have the potential to lower consumer fuel costs, increase energy security, and offer new job possibilities in the green economy.
- Electric vehicle has proven to be essential in combating climate change, improving air quality, and in natural resource conservation.
- While there are still some challenges to overcome, such as range anxiety and battery recycling, the benefits of electric vehicle propulsion technology make it a compelling choice for a sustainable transportation future.





Ajanovic, A. (2015). The future of electric vehicles: Prospects and impediments. WIREs Energy Environment.

Gondelach, S. (2010). Current and future developments of batteries for electric cars—An analysis. Thesis, Utrecht University.

Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on

Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404.

Title page Cover Image Source: https://electrek.co



# THAN Contact email: maduagwuifeanyi51@gmail.com

Course Programme: Environmental Technology I